CERTAIN CELL-LIKE MAPS OF Sﬂ WITH ZERO-

DIMENSTONAL SINGULAR SETS ARE
APPROXIMABLE BY HOMEOMORPHISMS.
AN EXPOSITION OF A THEOREM OF M. FREEDMAN

by Freadric . Ancel

M. Freedman's construction of topological 2-handles in dimension 4

relies heavi]y on the fact that certain celi-Tike maps of S&

are approxi-
mable by homeomorphisms. This paper is an exposition of Freedman's proof

of this fact.
1. INTRODUCTION TO THE THEOREM

We begin with the necessary definitions.
Let X and Y be compact spaces and let f:X - Y be a map. The singu-
Tar set of f, denoted S{f), is the set

iy €Y :f'a(y) contains more than one point}

{bserve that for every ¢ > 0, the set {y¥ € Y : diam f“](y) # e} is compact.
Since S{f) = Ui:? {y € Y :diam f_](y) > 1/11, we conclude that S{f) is

o-compact. f can be approximated by homeomorphisms if every neighborhood of

f in X x Y contains a homeomorphism from X to Y {or equivalently, if for
every € > 0, there is a homeomorphism h: X ~ Y such that d{f(x}, h{x})) <«
for every x € X).

Let M be an n-manifold. A compact subset S of int M is a tame zero-
dimensional subset of M if for every ¢ > 0, $ C Ui=§ int B, where
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835 Bzgua"@ Bk are disjoint n-cells of diameter < ¢ in int M. A c-compact

subset of int M is a tame zero-dimensioral subset of M if it is the union

of countably many compact tame zero-dimensional subsets.

Let X be a metric space. A subset of X is nowhere depse if its clo-

sure has empty interior. Two subsets S and T of X are separated in X if
(cl1 S)nT=9=5n0{el T} {or equivalently, if there are disjoint open
subsets U and V of X such that S C U and T © V).

We shall present a proof of the following theoremof M. Freedman.

THEQREM. If £ : S" > 5" s a surjective map such that S{f) is a no-
where dense tame zero-dimensional subset of Sng then T can be approximated

by homeomorphisms.

We precede the proof with several comments.

This theorem is a slight strengthening of the result that Freedman
stated and used in the construction of topological Z-handles in dimensicn
4. He hypothesized that {fnl(y) :y € 5{f}} is a null collection {for
every ¢ > 0, the set {y € s™ . diam f“}(y} 2 e} is finite) and that S{f)
is nowhere dense in S". We observed that minor modifications of his argu-

ment yield a proof of the above theorem.

In the hypothesis of this theorem, "surjective" can be replaced by
"non-constant.” For if f is non-constant. then it is a cell-1ike map. hence

a homotopy equivailence, hence surjective.

This theorem is valid for every positive integer n; but it represents
new information only when n = 4. In all dimensions other than 4, the theorem

is subsumed under the more general cellular approximation theorems of S.



Armentrout {(Memoir 107, Amer. Math. Soc. 1971} and L. Siebermann {Topology

11, 1972, 271-294).

This theorem might be regarded as an extension of M. Brown's General-
ized Schoenflies Theorem {Bull. Amer. Math. Soc. 66, 1960, 74-78). Indeed,
Brown's method implicitly establishes the following result. If f : 5 g
is a surjective map such that S(f) is a finite set, then f can be approxi-

mated by homeomorphisms. Furthermore, the technigues used in the proof

of Lemma 4 below are reminiscent of Brown's technigues.

The proof of the theorem is not a traditional decomposition space ar-
gument. It is not accomplished by "shrinking" the large point inverses of
f in the usual sense. Instead it relies on a replication device which makes
the large point inverses of f disappear at the expense of creating other
complications. (We comment in more detail immediately before Lemma 4 and
at the beginning of the proof of Lemma 6.) The proof has more affinity
with M. Brown's Generalized Schoenflies Theorem and L. Siebenmann's (el-
lular Approximation Theorem {both cited above) than with any decomposition-
shrinking argument.

The scheme which empioys the above-mentioned replication device im-
poses a rather interesting complication on the preoof. 1[It apparently forces
the use of relations which are neither maps nor their inverses. In fact,
the approximating hoemomorphism which is the goal of the proof arises as
the 1imit of such relations. For this reason, simple techniques for mani-

pulating relations appear in the proof.



¢. FIVE LEMMAS

We now prove five lemmas.

The first three Temmas develop information about tame zero-dimensional
sets. We find it useful fo begin by recalling some facts about the topology
ot the homsomorphism space of a compactum,

Suppose X is a compact space with metric p. Let H{X} denote the space
of homeomorphisms of X with the compact-open topology. {0One basis for the
compact-open topology on H{X) consists of all sets of the form
fthe #{x) : h € 0} where 0 varies over the open subsets of X x X.} The
compact-open topology on H{X) is induced by the "supremum metric" o which
is defined by o{g.h) = sup{p(g{x},h{x)) : x € X}. Although o is generally
not a complete metric on H{X), a complete metric t on H{X) is easily pro-
duced in terms of o by the formula 7{(g,h) = o{g,h) + o(g_],h_1). For a
subset A of X, define H(X,A) = {h e H{X): h|A = 1|A}. If A c X, then
H(X,A) is & closed subset of H(X); hence, the complete metric v on H{X)

restricts to a complete metric on H(X,A).

LEMMA 1. If S is a compact tame zero-dimensional subset of the in-
terior of a compact manifold M, and T is a closed nowhere dense subset of
M, then 1|M can be approximated by homeomorphisms h of M such that

h(S) N'T =¢ and h|aM = 1[aM.

PROOF. let e > 0. Enclose $ in a finite number of disjoint n-cells
of diameter < e in int M. Let h squeeze each of these n-cells toward a

point in its interior which does not lie inT. @



LEMMA 2. Let S be a c-compact subset of the interior of a compact

PL n-manifold M. The following three statements are equivalent.
{1) & iz a tame zero-dimensional subset of M.

{2) For every closed nowhere dense subset T of M, 1|M can be approximated

by homeomorphisms h of M such that S 0 h{T) = ¢ and n|aM = 1|aM.
{3} Every compact subset of S is a tame zero-dimensional subset of M.

PROOF. To prove (1) implies {2}, let § = Ui=? Si where each Si is
a compact tame zero-dimensional subset of M. For each i 2 1, Tet
Ui = {h € H{M,aM} : Si N h{(T) =¢}. Clearly each Ui is an open subset of
H{M,3M}, and Lemma 1 implies that each LLi is a dense subset of H{M,aM).
Since H{M,5M} has a complete metric, we conclude via the Baire Category
Theorem that n__7

i=1

because 1|M is approximable by elements of ﬁi=? Ui’

Ui is a dense subset of H{M,sM). Statement {2) foliows

Now assume Statement {2)}. Let S0 be a compact subset of 5. Choose
e > 0, and let T be the {n-1)-skeleton of a triangulation of M whose sim-
plices are all of diameter < e/3. Statement (2} provides a homeomorphism
h of M within /3 of 1|M such that SN h(T) = ¢ and h|aM = T|{sM. There
is @ regular neighborhood N of T in M such that SD N h{N) = ¢. Let
B = h{M - int N}. Then So < int B and each component of B is an n-cell
of diameter < . This proves S0 is a tame zero-dimensional subset of M.

Clearly (3) implies (1). =

LEMMA 3. If S and T are nowhere dense c-compact tame zero-dimensional
subsets of the interior of a compact manifold M, then 1|M can be agproxi-
mated by homeomorphisms h of M such that h{(S) and T are separated in M and

hlaM = 1|aM.
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PROOF. Let 5 =y,

a compact tame zevo-dimensional subset of M. For each {1 2 1, let

Si and T = uw T. where each S=i angd each Tﬁ is

i=1 i

u, = h e u{M, M : h(Si} Nnel T=g¢) and vﬁ = {h € #{M,aM) : hict 5} n Tﬁ = ¢},
Clearly each U; and each V. are open subsets of #(M,3M). Also Lemma 1 fmpiies
that each U, and each Vi are dense subsets of H{M,aM). Since H{M,sM) has

a complete metric, we conclude via the Baire Category Theorem that

nix? (Ui n Vi) is a dense subset of H{M,3M). Lemma 3 now follows because

1M can be approximated by elements of ni=? (U1 M Vi)m ]

The fourth lemma crystallizes the replication device which is the heart
of the proof of the theorem. In this lemma, the preimage pattern of the
given map ¢ on ¢h](A) is replicated by a new map v on w"?(ﬂ); and the repli-
cation is witnessed by a homeomorphism A : ¢°](A) -+ ¢_1(A) such that
ek = ¢i¢"1(A). We foreshadow the proof of the theorem by remarking that
this replication aliows us to replace the map ¢ by a relation R which is
defined by setting R = A on ¢_1(int A}, R = ¢"]=¢ on ¢“?(B - int A) and
R=4¢ on ¢“](C - int B). R represents an improvement over ¢ in that it
has no non-trivial point {nverses in ¢“?(A). The apparent disadvantage of
this procedure is that it exchanges a map for a relation.

We define two n-cells A C B to be concentric if AC int B and B - int A

is homeomorphic to -1, [0.1].

LEMMA 4. Suppose ¢ : C' = C is a map between n-cells which carries
3C' homeomorphically onto aC. Let A ¢ B c € be concentric n-cells. Then
there is a map ¢ : B +~ B and a homeomorphism i : ¢"1A + w“lA with the fol-

lowing properties.



(1) w]aB = 1|8

(2] ver = ole

{3) If 5{¢) is a nowhere dense tame zero-dimensional subset of £, then

so is S{u): and if S(¢} N 34 = ¢, then S{y) N 34 = ¢

{(4) If S{¢) is a nowhere denss tame zero-dimensional subset of { and

el S(¢) € int C, then 5{¢) - A and S{y) - A are separated in C.

PROOF. The homeomorphism ¢|8C' © 3C' - 3 extends by coning to a homeo-
morphism e : €' » C. A homeomorphism o : B > C such that o|A = T]A is
easily obtained by sliding in the product structures on B - int A and

C-intB. Amapy : B+ B is defined by ¢ = 0™ ogea” oo, Since

1

a]aC' = ¢|aC’, then y|aB = 1]aB. Since oA = 1]A, then v~ (A) = o™ '>as0™ H(A).

Hence a homeomorphism A : ¢_}(A) -+ w"](A) is defined by setting
= o lealoTH(A). Then ven = o legleT (A} = o]o” (A} because o '|A = 1]A.

Evidently S(y) = a_]CS(¢}], Property (3) follows from this.

Now assume S{¢)} is a nowhere dense tame zero-dimensional subset of C
and ¢l S(¢) € int €. We modify the proof only in taking more care in the
construction of o. We begin with any homeomorphism = : B - C such that
t|A = T|A. We apply Lemma 3 in B - int A substituting v '(5(¢)) - A for
S and 5{¢) N (int B = A} for T. This yields a homeomorphism h of B which
restricts to the identify on A U 9B such that het '(5{(¢)) - A and
S{(¢) n {int B ~ A) are separated in B. Since ¢l S{¢) € int C, then
cl hot”1(5(4)) € int B. It follows that het '(5(¢)) - A and S(6) - A are
separated in . Finally define the homeomorphism o : B »~ C by o = thhﬁ,
Since both t and h restrict to the identity on A, so does o. Now we have

o—](S(¢)j -~ A and S{¢) - A are separated in C. Since S(y) = 0_1(S(¢)),

propeﬁty {5) is proved. ®



The fifth lemma concerns relations. It is used in the proof of the

theorem to guarantee that the sequence of relations produced there con-
verges to a homeomorphism. Before starting this lemma, we establish some
convenient notation for relations which generalizes the usual functional
notation.

Let RC X x ¥; f.e., R is a relation from the set X to the set V.

Define

R“”E = {{y,x) € ¥ x X : (x.y) € R}

If5CY = 7, define
SeR = {{x,2) € X x 7 : {x,y) € Rand (y,z) € S for some y € Y}

If x€ X, define R{x) = {ye¥ : {x,¥y) € R}y. Thus for y € Y,
RUy) = (x€ X : Liy) € R}, If AC X, define R(A} = U {R{x) : x € A} and
define R|A = R n {A x ¥).

LEMMA 5. Llet R be a closed subset of X x ¥ where X and Y are compact
metric spaces. Suppose that ¢ > 0 and diam R(x) < e for each x € X. Then
R has a closed neighborhood N in X x Y such that diam N{x} < ¢ for each

X € X.

PROOF. There is a decreasing seguence N] 2 NZ - N3 D ... of closed
neighborhoods of R in X x Y such that ﬂi=? N, = R. Me assert that some
N, has the desired property: diam Ni(X) < ¢ for each x € X. For other-
wise, there are sequences {(Xi’yi)} and {(xi,zi)} in X x Y such that for
each i 2 1, (xi,yi) and (xigzi) lie in N and diam {yi,zi} 2 e, Since X

and Y are compact, then by passing to subsequences, we can assume that the



SequUence {x@} converges to the point x in X, and that the seguences {yi}

and {zﬁ} converge to the points y and z, respectively, in ¥. Conseguently,
diam {y,z} # ¢. Also since R = ﬂi;§ Nfg it follows that {x.v) and {x.z)}
belong to R. Hence y and z belong to R{x). Since diam R{x) < e, we have

8 contradiction., =
3. THE PROGF OF THE THEOREM

The proof of the theorem is inductive. The induction step. which has
a rather complicated statement, is isolated in Lemma 6 below.

We begin by describing the strategy of the proof. Let NO be a closed
neighborheood of f in s « s The goal is to produce a homeomorphism
h @ S" x 5" such that h No“ This will be accompliished by constructing

a decreasing sequence N0 ) Ng > N2 > <. of closed subsets of S" x §" with

the property that for each i » 1 and each x € §", Ni(x} and Ng](x) are non-
empty subsets of s" of diameter < 1/1-1. Upon setting h = ﬂi=? Ni’ we see
that h : 5" x 8" is a bijection which is, in fact, a homeomorphism because

h is a closed subset of " Sn,

We now give more details. We shall construct the following sequences.

{1} fi ™5 s and g; s" o s are surjective maps such that S(fﬁ)

and S(gi) are nowhere dense tame zero-dimensional subsets of S".

(2) Ri is a closed subset of 5" x 5" such that for each x € §",

1

diam R; {x) < 1/7 when i is odd, while diam Ri(x} < 1/i when is is even.

(3) L; is a compact n-dimensional submanifold of s" with the following
properties.
{a) R, ff1(Sn - int L.} is a homeomorphism from ff](sn - int L,) to
i i i i i

g;(s" - int Ly).
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(b) Ry | = g ler | AL

ic} S(fi} Nty and S(gi} N Li are separated in §".

(4} W, is a closed neighborhood of Ry in s" gl Ny ©N; y» and for

1
each x € S", diam N;](x) <1/ when i is odd, while diam N.{x) < 1/i when

i is even.

The construction of these sequences hegins with fo = f, 9y = 1|Sﬂ=

= = n
Ro f, LO 5 and N0 as chosen above.

The construction proceeds inductively.

Given . .5 95 4» Ri s Li y @nd N, _,, we obtain foo g Ry and L,

via Lemma 6 below. When i i3 odd: fi = fim] and Lemma & is applied with :

(F qs 9: 95 Riqs Ly_ys Int N, 4, 1/7) substituted for {(f, g, R, L, N, e}
then Lemma 6 produces {g., R,, L,) which we relabel {g{, R, Li). There=-
fore Ry © int N, ,. When i is even: g, =g, ; and Lemma € is appiied with
-1 N . . _
(95_15 fi-}’ Ri-]’ Li_ig int Ni-]’ 1/1) substituted for {f, g, R, L, N, e);
then Lemma 6 produces (g,, R, L,) which we relabel (fi’ R;], Li)' Again
Ry € int Ny_q.
Next Lemma 5 is used to obtain'Ni, When i is opdd: Lemma 5 is applied

with (s, s", R;‘, 171) substituted for (X, Y, R, e): then Lemma 5 provides



i

N, and we set N, = N31 O N, 4. When 1 9s even: Llemma 5 is applied with

f L

{5, 8, Riﬁ i/1) substituted for (X, ¥, R, e); then Lemma 5 provides N,

and we set Mﬁ = NN Niw}m
Conditions {3a) and {3b) above imply that Rﬁ(x} and R%1(x} are non-
empty for every x € S". Since Ry C N, it follows that Ni(x) and N%](x)

are non-empty for every x € s". It should now be clear that

1 o N2 D ... 15 a decreasing sequence of closed subsets of 5 % M

with the property that for each 1 2 1 and each x € Sns Né(x) and Ngﬁ(x}

NG |

are non-empty subsets of Sn of dismeter < 1/4-1. =
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LEMMA 6. Suppose T s" 5 5" and g s" 5 5™ are surjective maps such
that S{f) and ${g) are nowhere dense tame zero-dimensional subsets of S'.
Suppose R is a closed subset of §" x 8" and L is a compact n-dimensional

submanifold of S" with the following properties.

1

(1) R | £7(s" - int L) is a homeomorphism from £ (8" - int L) to

gué{sn - int L}.

i

(2) R1ELY =g et L)

(3) S{f) Nt and S{g) N L are separated in S".

Then for every ¢ > § and every neighborhocd N of R in s« Sn, there is a
surjective map g, : s 5 5™ such that S{g,) is a nowhere dense tame zero-
dimensional subset of S", there is a closed subset R, of of s« 5", and
there is a compact n-dimensional submanifold L, of s" with the following

properties.

=1, .1

(1,) R, I f - int L,] is a homeomorphism from fm](Sn - int L) to

g;I(Sn - int L,).

(5

(2,) R, 1 FL) =gl of 1 FL,).
13,) S{f) n L, and S{g,) N L, are separated in s,
{4,) diam R;E(x) < ¢ for every x € S".

{5,) R, CN.
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PROOF. let 7 =L o {z e 5" : diam ¢

{z} 2 e}. Then 7 is a compact
tame zero-dimensional subset of L. The hypotheses of Lemma & imply that
S{f) a3l =¢: 50 ZCint L. It also follows that
Ry} + yes” and diam R™V(y) » ¢} = {(F '{z) : z € Z}. Thus the ele-
ments of {fwi(z) :z € I} are the sets which must be replaced.

Here is a rough idea of how we proceed. As we remarked in Section 1,

E(z) : z € 7} in the usual sense.

we shall not "shrink” the elements of {f
Instead, we will enclose Z in a finite number A}, Az* cees Ak of small dis-
joint n-cells; and we shall modify the map g so that for each i, 1 €1 £ &k,
the preimage pattern of ¥ on f“l(Ai) is replicated by g on g“i(Ai)w This
will allow us to redefine R on f“1(Ai} so that it carries f“1(Ai) homeo-
morphically onto gw}(Ai). In this way, the large point inverses of R simply
vanish at the expense of complicating the structure of the wap g.

There is a finite collection Bl’ 52’ vees Bk of disjoint collared

n-cells in 8" with the following properties.
k .
(1) ZC%ﬂ1MBV

k .
{2} U By ©int L.
k -
1 Bi) nel 5(g) = ¢.

(4) £(8,) x g

; (Bj) cNforl<is<k.

(1) is possible because Z is a compact tame zero-dimensional set. ({2) is
possible because 7 c int L. Since S(f) n L and S{g) n L are separated in
s™, then Z n ¢l S{g) = ¢; this makes (3) possible. For each z € L,
f-i(z) x g”}(z) = R | f-iiz) ¢ int N. Hence, there is a & > 0 such that
f_1(B) x 9-1(8) C int N for any set B of diameter < & in L. By choosing

the Bi's of diameter < §, {4} is guaranteed.
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Rext we Tind a Tinite collection A., A& .., B of n-cells in 5" ¢

12 k

that
(5} Ai C Bi are concentric for 1 € 1 € k, and
k .
{(6) 1c Uiz int AL

We use Lemma £ to adjust Ui:% aAi slightly so that we can also assume

{(7) S{fin aAi =¢ for 1 €15 k.

#
=

Since S{f) and 5{g) are nowhere dense in 5", then for each i, 1 € 4

there is a collared n-cell Ci in 8" so that
(8) B1 C Ci are concentric, and
{9) ¢l S{f) v ¢l S(g) C int Ci"

Fach Ci is the complement of the interior of an appropriately chosen n-cell
ying in 8" - {c1 S(f) v ¢l S{q)).

let 1 €9 € k. Since ¢l S(f} C int Css then fml(sci) is a bicollared
{n-1)-sphere in s, Therefore, according to the Generalized Schoenflies

Theorem, f'1(ci) is an n-cell. We now apply Lemma 4 to the map

) o f_]

£ 1,

(Ci) + C1= We thereby obtain a map i Bi > Bi and a
homeomorphism Ay o fm1(Ai) + w;](Ai) with the following properties
(10) wilaBi = 1]8B;-

(1) yyony = F £ a.).

1

(12) S(wi) is a nowhere dense tame zero-dimensional subset of S", and

S{ypy) 0 3A, = ¢.
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{13} S{f} - int ﬂi and S{w@} - int Ai are separatsd im s,

Lemma 4 actualiy tells us that 5(f} - Ai and S{wﬁ) - Aﬁ are separated in

Ei’ Property {13} follows because S{f} and Siw@) are disjoint from B2A..

We now define the map g, : 5" » 5" by specifying that for 1 € 1 < k,

and that
_ =10
g, =gong (S -4,

Property (10} guarantees that g, is well-defined. For 1 < i <k, since

1

gl g (Bi) is a homeomorphism, then the preimage pattern of gl g;§(A§)

replicates the preimage pattern of f | f”](Ai).

Observe that S{g,) = S{g) Vv [Uizﬁ (wi)]. Hence S{g,) is a nowhere
dense tame zero-dimensional subset of Sna

: _ k

befine L, = L - Y. 4

that S{f) n L and S{g) n L. are separated in sn imply that S(f) n L, and

int Ai' Property {13) together with the fact

S{g,) N L, are separated in sh,

We define R, c S" « S" by specifying that for 1< i <k

R, 1 F A = g7 e,
and
Ry | F71(B, - int Ay) = gp'of 1 £71(B, - int Ay,
and that
R, | LT u.=§ int B} =R | Fsn - Ui=§ int B.).
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We must verify that R, is well-defined where the domains of definition cver-
Tap; nameily on fm}{aﬂj} and on f=]{3Bi§ for 1T<i<k, letl €1k, Since
S{v

Also from the definition of g, we have g;E | 3R, = g

) N 8A, = 9, then (11) implies that x| 7 (oA,) = yi'of | £ (2A,).
}

i
=1

v; 1 eh.. Thus

on the set f“%(aAi)y we have

-1

RS I
g A»gmg 'i).%

of = gt

-

Since g, = g On g“g(aai) and since R =g '=Ff on f“ﬁfaﬂiﬁ, we see that on

1

the set f"}{aBi)g g;§°f =g 'of = R,

Evidently R, | f“l(ﬂi) is a homeomorphism from £

{Ai) to
g7 (0} (8,)) = g;'(A,) for 1< i< k. Also on £71(s" - int L), R, coin-
cides with R and, thus, carries f'E(Sn - int L) homeomorphically onto
9;1(Sn - int L). It follows that R, | f"](Sn - int L,} is a homeomorphism
from £71(s" - dnt 1,) to g3 (S - int L,).

On the set fmI(L - Ui=$
R, = 95 =f on each of the sets f (B, - int A) for 1< i<k. It follows
-1

=1

. oD . _ =1
int Bi)9 R, =R=g of =g,

=f, Also

that R, | f (L.} = g;]of_l f—](L*),

1(x) < ¢, First, if

Now Tet x € S". We shall argue that diam R}
X € R*Cf'](Ai)) for some i, 1 € i € k, then R;1(x) is a point because
R, | f”1(Ai) is a homeomorphism. Secend, if x € R,,,(:"i"“wé(B_,5 - int A.)) for
some i, 1 €1 <k, then R;1(x) = f"1Cg*(x)] has dismeter < e. This is be-
cause g,{x) € Bi - int Ajg but f_1 takes a point of B, to a set of diam-
eter 2 ¢ only if that point lies in Z N Bi’ and 7 N Bi C int Ai’ Third,
it xe R (F s - ui=§
because the point inverses of R of diameter > ¢ all lie in f“i(Z), and

=1 -1 k
) ¢ £, K

int Bi)jg then R;E(x) = R°](x) has diameter < g,

int Bi)'
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tet 1< 1< k. Then

1 =1

R, | fgﬁiﬁﬂ) < g awg oAy ﬂ fﬁl(ﬁiﬁ = Q;EQf | fﬂiiﬁn}

Hence

1 -1 -1 -
F £ € B x g

R, | f(B;) C 9, ;

Since gZT(Bi} = gm](8i39 we have

1

Re 1 F71(B) © F(BY) x 97 (B < N

Also R, | f“](Sn - ui=§ int Bi} C RCN. We conclude that R, C N. ®



